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Automata network SIR models for the spread of infectious 
diseases in populations of moving individuals 
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AbslracL Automata nerwork SIR models for the spread of infectious d iseass  are studied. 
The local tule mnsists of WO subrules. The fils1 one, applied sequentially, describes 
the molion of the individuals, the second is synchronous and models infection and 
removal (or recfflecy). The spatial "e la t ions  created the application of the second 
subrule are partially destroyed according U) the degree of miring of the population which 
follows from the application of the 6rst subrule. One- and two-population models are 
considered. In the second case, individuals belonging 10 one population may be infected 
only bj individuals belonging to the other papulation as is the case, for example, for 
the heterosexual propagation of a venereal disease. It is shown that the acurrence of 
the epidemic in one population may be triggered by the ccsurrence of the epidemic 
in the other population. I h e  emphasis is on the influence of the degree of mixing of 
the individuals which follow h m  their diffusive motion. In particular, the asymptotic 
behaviours for mry small and very large mixing are detennined. When the degree of 
miring tends fo infinity the "elations are mmplctely destroyed and the time evolution 
of the epidemic is then mrrectly predicted by the mean-field approximation. 

I. Introduction 

?he majority of epidemic models are formulated in terms of either differential equa- 
tions or stochastic processes (Bailey 1975, Waltman 1974). This paper deals with 
automata network SIR models for the spread of infectious diseases within a popula- 
tion of moving individuals. The emphasis is on the influence of motion. This factor 
is usually neglected in epidemic models (Grassberger 1983, 1985). In an SIR model, 
based on disease status, the individuals are divided into three disjoint groups: 

(S) the suscepfible group, i.e. those individuals who are not infected but who are 
capable of contracting the disease and become infective; 

(I) the infective group, i.e. those individuals who are capable of transmitting the 
disease to susceptibles; and 

(R) the removed group, i.e. those individuals who have had the disease and are 
dead, or are isolated, or have recovered and are permanently immune. 

The possible evolution of an individual may, therefore, he represented by the 
following transfer diagram: 

S % I Z R  

where pi and p ,  denotes, respectively, the probability of being infected and the 
probability to be removed. 

0M5-4470/921092447+15$04.50 @ 1992 IOP Publishing Ud 2447 
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The models discussed in this paper are formulated in terms of automata networks 
(Goles and Martinez 1990). Automata networks consist of graphs with a discrete 
variable at each vertex. Each vertex variable evolves in discrete time steps according 
to a definite rule involving the value of neighbouring vertex variables. The vertex 
variables may be updated sequentially or synchronously. 

Automata networks are discrete dynamical systems, which may be defined more 
formally as follows. 

Let G = (V, E) be a graph, where V is a set of vertices and E a set of edges. 
Each edge joins two vertices not necessarily distinct. An automata network, defined 
on V, is a triple (G,Q,{ f , l i  E V}), where G is a graph on V, Q a finite set of 
states and f,: QI'.I + Q a mapping, called the local transition rule associated to 
vertex i. U; = {j E V l { j ,  i) E E) is the neighbourhood of i, ie. the set of vertices 
connected to i, and IUiI denotes the number of vertices belonging to U , .  The graph 
G is assumed to be locally finite, i.e. for all i E V, \Ui\ < m. 

In our models the set V is thc two-dimensional torus 2;. where 2, is the set of 
integers modulo L. A vertex is either empty or occupied by an individual belonging 
to one of the three groups. The spread of the disease is governed by the following 
rules: 

(i) Susceptiblzs become infective by contact, i.e. a susceptible may become infec- 
tive with a probability pi if, and only if, it is in the neighbourhood of an infective. This 
hypothesis neglects latent periods, i.e. an infected susceptible becomes immediately 
infective. 

(ii) Infectives are removed (or become permanently immune) with a probability p,. 
This assumption states that removal is equally likely among infectives. In particular, 
it does not take into account the length of time the individual has been infective. 

(iii) The time unit is the time step. During one time step, the two preceding rules 
are applied after the individuals have moved on the lattice according to a specific 
rule. 

(iv) An individual selected at random may move to a vertex also chosen at random. 
If the chosen vertex is empty the individual will move, otherwise the individual will 
not move. The set in which the vertex is randomly chosen depends on the range 
of the move. Tb illustrate the importance of this range, we considered two extreme 
cases. The chosen vertex may either be one of the four nearest neighbours or be any 
vertex of the graph. These two particular types of move will be called, respectively, 
short- and long-range moves. If N is the total number of individuals on 2;. mN 
individuals, where m is a real positive number, are sequentially selected at random 
to perform a move. This sequential process allows some individuals to move more 
than others. Since an individual may only move to an empty site, the parameter m 
represents the average number of lentalive moves per individual during a unit of time. 
It is a measure of the degree of miring which follows from the application of this rule. 

This model assumes that the population is closed. It ignores births, deaths by 
other causes, immigrations, or emigrations. 

It is straightforward to extend this model to more than one population. For in- 
stance, the heterosexual spread of a venereal disease involves the obligatory switching 
of infection back and forth between two distinct populations. In this case, the proba- 
bility for a susceptible of population 1 (respcctively 2) to become infective by contact 
with an infective of population 2 (respectively 1) is denoted by P , , ~  (respectively p Z , J ,  
and the probability for an infective of population 1 (respectively 2) to be removed is 
denotcd by pi,r  (respectively p z , , ) ,  A less crude model for the heterosexual spread 
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of a venereal disease may be obtained, for example, by separating males and females 
into different age groups and assuming that a male (respectively female) susceptible 
belonging to a given age group can catch the disease from a female (respectively 
male) infective if, and only if, the infective belongs to neighbouring age groups. 

These models are automata networh with mixed transition rules. That k, at each 
time step, the evolution results from the application of two subrules. The first subrule 
specifies the motion of the individuals. It is applied sequentially. The second one 
determines which susceptibles become infectives and which infectives are removed. 
It is applied synchronously. Both subrules are probabilistic. In all the models, the 
transition rules are translation invariant, Le. they do not depend upon the vertex i .  

2. Mean-held approximation 

The mean-field approximation ignores space dependence and neglects correlations. 
In the case of a system exhibiting a phase transition the quantitative predictions of 
a mean-field approximation are not very good, but, for the SIR models described 
in the preceding section, since the first subrule represents a process that destroys 
the correlations created by the second subrule, if m tends to 03, the mean-field 
approximation should become exact. 

If the densities of the different groups of individuals are not space-dependent, 
the state of the population a at time 1 is characterized by the respective densities 
Sa( l ) ,  I , ( t )  and R,(t) of susceptible, infective and removed individuals. C, = 
S,(t) + 1,(1) + R,(t) is the density of individuals of population a. Since the 
population is closed, it is time-independent. 

21. The one-population model 

Since we are considering one population, we omit the index a. We have 

S ( t  + 1) = C -  / ( t  + 1) - R(t + 1 )  

R(t + 1 )  = R ( t )  + p , I ( t )  

I ( t +  1) = 1 ( t )  + S ( t ) ( l  - (1 - P i I ( t ) ) ” )  - p J ( 1 )  

(1) 

(2) 

(3) 

where z is the number of neighbouring vortices of a given vortex. 
From equations (1)-(3), it follows that S(1) is positive non-increasing whereas 

R ( t )  is positive non-decreasing. Therefore, the infinite-time limits S(o0) and R(w)  
exist. Since I ( t )  = C - S(1) - R(t ) ,  it follows also that [(CO) exists and satisfies 
the relation 

R(O3) = R(m) + P J ( O 3 )  

which shows that 1(03) = 0. 
If the initial conditions are 

R ( 0 )  = 0 and I ( 0 )  S(0 )  

I( 1) is small, and we have 

I(1) - I(0) = ( Z P ; S ( O )  - P , ) l ( O )  + 0 ( I ’ ( 0 ) ) .  (4) 
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Hence, according to the initial value of the density of susceptibles, we may distinguish 
two cases: 

(i) If S(0 )  < p , / z p i  then I (1 )  < I(0). Since S(1) is a non-increasing function 
of time I( t )  goes monotonically to zero as t tends to ca. That is, no epidemic ~ % u r s .  

(ii) If S(0 )  > p,/zpi then I(1) > I(0). The concentration I ( t )  of infective 
increases as long as the density of susceptibles S(1) is greater than the threshold 
p , / z p ,  and then tends monotonically to zero. 

N Boccara and K Cheong 

t 

Flgore 1. l i m e  evolution of the density of infective for the one-population model using 
the mean-field approximation. C = 0.6; I(0) = 0.01; z = 4; pi = 0.3. (a) pr  = 0.5 
(S(0) > pr/zpi). (b) pr = 0.75 (S(0) < pr/zpi). 

This shows that the spread of the disease occurs only if the initial density of 
susceptibles is greater than a threshold value. This threshold theorem has been 
established for the fust time by Kermack and McKendrick (1927) using an epidemic 
model formulated in terms of a set of three differential equations. I ( t )  being, in 
general, very small, equation (3) is well approximated by 

~ ( t  + 1) = I ( O  + z p i s ( t ) i ( t )  - P , r ( t )  (3') 

which shows that the mean-field approximation is equivalent to a time discrete formu- 
lation of the Kermack-McKendrick model. Figure 1 shows two typical time evolutions 
of the density of infectives. 

22. The two-population model 

Here a = 1,2. We have 

S,(t + 1) = C, - I,(t + 1) - R,(t + 1) 

R,(t + 1 )  = R , ( t )  + P , , A ( t )  

1,(1+ 1) = I , ( t )  + S,(t) (1 - ( 1  - P,,iIP(t)Y) - P e , A ( f )  

(5 )  

(6) 

(7) 

where a and p are equal to one or two with a # p. 
As for the one-population model, it follows that, for a = 1,2, S, ( t )  is positive 

non-increasing whereas R ,  ( t )  is positive non-decreasing. Therefore, the infinite-time 
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limits S,(O~) and R,(m) exist. Since I , ( t )  = C, - S,(t)- R = ( t ) ,  it also follows 
that I,(M) exists and satisfies the relation 

R,(o~)  = R,(CO) + P o , r u m )  

which shows that I, (03) = 0. 
Due to the coupling between the two populations a wider variety of situations 

mgy "recr. %r h.n..t.firp, ;f !hp *.itig! mfifiiticp. 

R,(O) = 0 and I,(O) << S J O )  

1,(1) is small, and we have 

L ( 1 )  - L(0) = .P,,iS,(O)~,(O) - P q r I 0 ( O )  + O(I$(O))  (8) 

where Q and p are equal to one or two with a + p. Hence, according to the initial 
values S,(O), S,(O), I , ( O )  and 12(0) ,  we may observe the following behaviours: 

11(1) < I,(O) and 12(1) < 12(0 ) .  Since S, and S, are non-increasing functions of 
time, I , ( t )  and I , ( t )  go monotonically to zero as t tends to m. No epidemic occurs. 

A A  i f  .- c tn \  I I n \ _  I In \  .. n _ _  c In \  I In\--  I I n \  \ n +hen 

1,(1) > I , (O)  and 1,(1) > 12(0) .  The densities of infectives in both populations 
increase as long as the densities of susceptibles and infectives satisfy the relations 

( 0  1; ~ P ~ , ~ ~ , ( O ) ~ , ( O ) - P ~ , , I , ( O )  < 0 and ~ P , , ~ ~ , ( O ) ~ , ( ~ ) - P ~ , , ~ , ( ~ )  < 0, then 

\.'I " r l , i " l \ " / . 2 \ " , ~ P l , , ' I \ " /  f " "U" * t ' 2 , i " 2 \ " I ' l \ " I  t'2,r'2\"I T " 7  U.wna 

Wl,iSl(t)IAt) - Pl , J l ( t )  > 0 and ZP2,iS2(WI(i) - P 2 , J 2 ( t )  > 0 
and then tend monotonically to zero. 

then 1,(1) < I , (O)  and Z 2 ( l )  > 1 2 ( 0 ) ,  but, since I , ( t  + 1) depends on 1 2 ( t ) ,  
the density of infectives in population 1 does not necessarily goes monotonically to 
zero. After having decreased for few time steps, due to the increase of the density 
of infectives in population 2, it may increase if ~ p , , ~ S , ( t ) I , ( t )  - P , , ~ I , ( ~ )  becomes 
positive. The spread of the disease in population 2 may trigger the epidemic in 
popuiation i. if, however, the increase of the densi t  of infectives in popuiation 
2 is not high enough, then the density of infectives in population 1 will decrease 
monotonically whereas the density of infectives in population 2 will increase as long 
as the density of susceptibles Sz( t )  is greater than p2,,Il(t)/zp2,iIl(i),  and then 
tends monotonically to m o .  The disease spreads only in population 2 whereas no 
epidemic occurs in population 1. 

Figures 2(a)-(d)  show some typical time evolutions of the density of infectives in 
both populations. 

In phase transition theory, it is well known that infinite-range interaction models 
exhibit a mean-field behaviour. In the appendix infinite-range interaction versions of 
the one- and two-population SIR models are presented. 

(iu) If ZP~,~~',(O)I,(O) - P ~ , J , ( O )  < 0 and ~ P , , , S , ( O ) ~ ~ ( O )  - P , , J , ( O )  > 0, 
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Figure 2 l l m e  evolution of the densities af infcctives for the two-population model 
using the mean-Eeld approximation. QI  = rp l . i S l (0 ) l z (O)  - p , , , I , ( o ) ;  Q2 = 
~ p ~ , i s ~ ( o ) r ~ ( o ) - p ~ , , r ~ ( o ) ;  I = 4; s,(o) = s2(o) = 0.29; r,(o) = = o.01. 
(0 )  Q1 < 0 and Q z  < 0, pl,i = 0.37, p2,i = 0.23, pl,r = 0.6. p 2 , ,  = 0.3. (b) 
QI > 0 and Qz > 0, pl,i = 0.5, p2.i = 0.8, p , , ,  = 0.35, p 2 , .  = 0.25. (c) Q1 < 0 
and Qz > 0, pl,i = 0.13, pz,i = 0.8, p , , ,  = 0.27, p2,r = 0.35. (d )  Q ,  < 0 and 
Q z  > 0. pi,i = 0.15, p2,i = 0.6, pi , ,  = 0.5, p ~ , ~  = 0.3. 

3. Simulations 

3.1. The one-population model 

In all our simulations, the total density of individuals is above the site percolation 
threshold for the square lattice, which is equal to 0.593 (Stauffer 1979), in order to be. 
able to observe cooperative effects when m = 0. Figure 3 shows that the influence 
of the parameter m on the time evolution of an epidemic with permanent removal 
for short-range moves. As m increases the density of infectives as a function of time 
tends to the mean-field result. Figure 4 shows that the convergence to the mean-field 
result is much faster for long-range moves. Mixing is more effective with long-range 
moves. If, instead of permanent removal, infectives recover with the probability p ,  
and become permanently immune the convergence to the mean-field result is slower 
(figure 5) since the presence of the inert immune population on the lattice interfere 
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FLym 3. Ttme evolulion of an epidemic for the 
one-populalion model for different values of m. 
Short-range moves and permanent removal. C = 
0.6; 1 ( 0 ) = 0 . 0 1 ; p i = 0 . 5 ; p , = 0 . 3 , 1 0 0 X 1 0 0  
laltice. Each p i n t  represents lhe average of 10 
experiments: +, m = 0; 0. m = 5;  Y ,  m = 25; 
0; m = 250. The h a k e n  curve m r r e s p n d s  ta 
the mean-field approximation. 

t 

Figurr 4 l i m e  evolution of an epidemic for the 
one-ppulalion model for different values of m. 
Long-range moves and permanent removal. C = 

latlse. Each p m 1  represents the average of 10 
expeliments: +, m = 0; e, m = 0.2; x ,  m = 
0.5; 0; m = 2. The broken curve mrrespnds  10 
the mean-field approximation. 

0.6; r (o)  = 0.01; p i  = 0.5; p .  = 0.3, i o o x  l o o  

Figure 5. ‘lime evolution of an epidemic for the 
one-papulation model far different values of m. 
Shon-ranne moves and permanen1 recovey. C = 

lattice. Each point represents the average of IO 
experiments: +, m = 0; 0, m = 5; x ,  m = 25; 
0, m = 250. The broken curve mmespnds  to 
the mean-field approximation. 

0.6; r (o )  = 0.01; pi = 0.5; pr = 0.3, I O O X  loo 

with the mixing. 
Note that, since the initial configuration is random, for any type of move and 

any value of m, the value of density of infectives after the first time step is correctly 
predicted by the mean-field approximation. 

As shown by Kermack and McKendrick (1927) the spread of the disease does not 
stop for lack of a susceptible population. A$ the time 1 tends to infinity, the stationary 
density of susceptibles S( m, co) for a given value of m positive. The variation of 
S(m,oo) as a function of m is represented in Figure 6 in the case of permanent 
removal and short-range moves. As expected S(m,co) tends to the mean-field value 
as m tends to c-a. More precisely, the log-log plot, represented in Figure 7, shows 
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Fkure 7. A p p t o t i c  behaviour a s  m tends IO m 
of the stationary density of susceptibles for the one- 
population model in the 0% of permanent removal 
and short-range moves. C = 0.6; pi = 0.5; pr = 
0.3, I00 x 100 lattice. Each p i n t  represents Ihe 
average of20 experiments. Slope = -1.1410.11. 
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Figure 8. Asymptotic behaviour as m tends U, m 
of the stationary density of susceptibles for the one- 
population model in the case of permanent remvery 
and shon-range moves. C = 0 .6 ;  pi = 0.5: pI = 
0 . 3 ,  100 x 100 lattice. Each point represents rhe 
average of 20 experiments. Slope I - 1 . 0 2 ~ 0 . 1 1 .  

that S(m,co)  tends to S(ca,m) as m-", where a = 1 . 1 4 ~ 0 . 1 1 ,  
Fer comnnri-n r"..I.,.. =e have a!so studied &e sympmic  !xhgvil:aui IS -" tends tl:a 

cn of S( m ,  CO) - S(m, m )  if we have permanent recovery and short-range moves 
(figure 8) or permanent removal and long-range moves (figure 9). These two log-log 
plots show that the exponent a is equal to 1.02 f 0.1 1 in the first case whereas it i., 
equal to 1.73 f 0.11 in the second one. The d u e  of the exponent 01 characterizes 
the approach of the stationary density of susceptibles S(m,w) to its mean-field 
%due. a seems to depend upon the range of the move but not upon the fact that 
we have permanent recovery or permanent removal. Far  short-range moves which 
correspond to a diffusive motion, a is close to 1. When m is large, this diffusive 
motion destroys correlations in a volume which behaves as md/',  where d is the 
space dimensionality. One should expect a 1 / m  behaviour for S( m, m) - S( CO, 00) 
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when d = 2 (Grassberger 1991) if the spatial correlations decrease fast enough. We 
found that the approach of the stationaly density of susceptibles to its mean-field 
value is faster for long-range moves. This is reasonable since mixing is more effective 
in this case. 

m 

Fkum 9. AFymplotic behaviour as m tends to m 
oi lhe  stationary density of susceptibla for the one- 
populalion model in the cdse of permanent removal 
and long-range moves. C = 0.6; pi = 0.5; pr = 
0.3 ,  100 x 100 lattice. Each point represents the 
average of u)a;periments. Slope = -1.73f0.11. 

0.01 0.10 

m 

Figure 10. Asymptotic behaviour as m tends to 0 
of the slationaly density of susceptible for lhe one- 
population model in the cdse at permanen1 removal 
and &on-range moves C = 0 . 6 ;  pi = 0.5; pr = 
0.3, 100 x 100 lattice. Each pin1 represents lhe 
average of 4W experiments. Slope = l . O Z f 0 . 0 5 .  

The log-log plot of S(0,m) - S(m,m), represented in figure 10, shows that, for 
small m, S(m,m) seems to behave linearly (slope = 1.02 f 0.05). The absolute 
value of the derivative with respect to m of the stationaly density of susceptibles at 
the origin is finite but it is, however, very large. That is, as smn as the individuals 
start to move, the spread of the disease increases dramatically. 

The asymtotic behaviour of S ( 0 ,  m) - S(m,  m) for small values of m is related 
to the asymptotic behaviour of S(0, m)-S(O,t) for large values of t .  More precisely, 
we argue that 

s(0,co) - s(0,t) - e - " '  S(0,m) - s ( m , m )  - m 

where a is a positive constant. This result can be established as a consequence of the 
following two assumptions (Boccara et a1 1992): 

(i) The function 

( m , e - " ) C a ( m , e - " ' )  = S(o ,m) -S(m, t )  

is a homogeneous function of m and e-"' such that 

A(Azm,Xe-" ' )  E A a ( ~ n , e - ~ ' ) .  

(ii) 

a 
lim - S ( m , t )  - m 
:-- ai 
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nom the first assumption it follows that 
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A(m,e-") = e-alA (mea2',1) 

A(m,e-") = m1IZA (1,e-a'/m'/2). 

That is, S(0,m) - S(0,t) - e-ai and S(0,m) - S(m,m) - milZ. 
The second assumption expresses the fact that, when m is small, the variation 

of the density of susceptihles per unit of time is proportional to m. This assump- 
tion Seems reasonable if the approach to the attractor may be analysed in terms of 
annihilating particules or defects (Boccara el al 1991). Since 

a a 
at at -S(m, t )  = --A(m,eba') 

it follows that 

a 
t - -  at Iim - S ( m , t )  - m"". 

Hence I = 1, that is S(0,m) - S(m,m) - m. 
If, instead of an exponential behaviour, S(0,m) - S ( 0 , t )  tends to zero as 

as t tends to 03, where y is a positive real, then, assuming that (m, t )  c S(0,m) - 
S ( m , t )  is a homogeneous function of m and t, it follows that S(0,m)-S(m,m) - 
m y / ? + * ,  which shows that, in this case, the derivative with respect to m of the 
asymptotic density of susceptihles for m = 0 is infinite. 

t 

Figure 11. Varialion of log I ( 0 ,  t)  as a function 
of t for the one-population model in the case 
of permanent removal and shon-range moves. 
C = 0.6; pi = 0.5; pr = 0.3, 500 x 500 
lattice. Each p i n t  represenls the average of 
ten expelimenls. 

Figure 11, which represents the variation of log I ( 0 , t )  as a function of 1 ,  show 
that I ( 0 , t )  tends to zero exponentially as t tends to m. Since 

s ( 0 , O ) - S ( 0 , t )  = I ( 0 , T ) d T  l 
it follows that 

S(0,m) - S(0 , t )  - e-a1. 
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Here again for comparison we have also studied the asymptotic behaviour as m 
tends to zero of S( 0 ,  m) - S( m, m) if we have permanent recovely and short-range 
moves (figure 12) or permanent removal and long-range moves (figure 13). These WO 
log-log plots show that, for small m, S(0,  CO) - S(m,  m) - m (more precisely the 
slopesare, respectively, 1.01iO.05 and 0.97&0.10. This result does not depend, in 
particular, upon the range of the moves. This is reasonable since in the above proof 
there is no need to specify how the small mixing is created. ... 

0.01 0.10 
m 

Flgurr U. Asymptotic behaviour as m tends to 0 
of the stationary density of susceplibles for the one- 
populalion mcdel in the case of permanent recovery 
and short-range moves. C = 0.6;  pi = 0.5; pr = 
0.3, 100 x 100 lattice. Each p i n 1  represents the 
average of 2w experiments. Slope = 1.01 *0.05. 

I '  

0.ZO 

h 

- ; 
UI 
I * 0.10 
0 0.w v 

0.08 

0.07 

0.w - 
0.02 0.03 0.04 0.06 0.08 

m 

Figure 13. Asymptolic behaviour as m tends to 0 
of the stationary density of susceptibles for the one- 
population model in lhe case of pennanenl removal 
and long-range moves. C = 0.6; pi = 0.5; p .  = 
0.3, 100 x 100 latlice Each point represents the 
average of 3w experiments. Slope = 0.97i0.10. 

3.2. The hvo-population model 

Figures 14-17 represent the time evolution of the densities of infectives for the 
two-population model for m = 1 in the case of short-range moves with permanent 
removal. Figures 18(a) and 18(b) show the influence of the parameter m on the time 
evolution of an epidemic when the occurrence of the epidemic in one population is 
triggered by the occurrence of the epidemic in the other population in the case of 
short-range moves with permanent removal. As for the one-population model, when. 
m increases the density of infectives as a function of time tends to the mean-field 
result. For the values of the various probabilities chosen in this case, the epidemic 
in population 2 is not triggered by the Occurrence of the epidemic in population 1 if 
m = 0 whereas it is when m is large enough. 

4. Conclusion 

We have studied automata network SIR models for the spread of infectious diseases 
in populations of moving individuals. The local rule of the automaton consists of WO 

subrules. The first, applied sequentially, describes the different types of moves the 
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t 

F@re 14 l ime evolution of the densities or in- 
feclives for the two-population model for m = 1. 
Shon-range moves and permanent removal. C, = 
C2 = 0.3; I l ( 0 )  = I2 (0 )  = 0.01; pl,i = 0.37; 
p t , , = 0 . 5 2 ; p ~ , j = 0 . 2 3 ; p ~ , ~ = 0 . 3 0 , 1 0 0 x 1 0 0  
lattice. Each point represents lhe averagc of ZO ex- 
periments: 0, population 1; 0, population 2. 

t 

Flgmre 16. l ime eVolution at lhe densities of in- 
fectives for the two-population model for n, = 1.  
Short-range moves and permanent removal. CI = 
C2 = 0.3; I l ( 0 )  = I z ( 0 )  = 0.01; p1.i = 0.16; 
PI,.  = 0.45; p2,j = 0.60; p 2 , .  = 0.30, I O O X  100 
lallice. Each p i n 1  represents the average of ZO ex- 
periments: 0. population I; 0, population 2. 

Figure 15. l ime eVoIulion of L e  densities of in- 
fectives far the two-population model for n~ = 1. 
Short-range moves and permanent removal, C1 = 
C, = 0.3; Ii(0) = I2 (0 )  = 0.01; pl,i = 0.50;  

= 0.30; pz,i = 0.80; p z , ,  = 0 .20 ,  lOOxl00 
lattice. Each point represents the average of 20 ex- 
periments: 0, population 1; 0, population 2. 

0.oi.m 

t 

Flgurc 17. l i m e  evolution of h e  densilies of in- 
fectives for the two-population model for m = 1. 
Shan-range moves and permanen1 removal. C1 = 
C2 = 0.3; I l ( 0 )  = I z ( 0 )  = 0.01; pi,i = 0.10; 
p ~ , r = 0 . 1 9 ; p ~ , i = 0 . 8 0 ; p ~ , , = 0 . 1 6 . 1 0 0 X 1 0 0  
lallice. Each point reprcsents the average of ZO ex- 
periments. e, population 1; 0, population 2. 

individuals may perform whereas the second, which is synchronous, models infection 
and removal (or recovery). We have considered one- and two-population models. 
In the second case, individuals belonging to one population may be infected only 
by individuals belonging to the other population as is the case for the heterosexual 
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Figure 18. l i m e  evolulion of an epidemic for the two-populalion model for differen1 
values of m. when the cccurrence of the epidemic in one population is uigbered by the 
DrmmnCe of lhe epidemic in lhe other population. Shon-range mwes and permanenl 
removal. C, = C, = 0.3: 11(0) = 1,(0) = 0.01; pl,; = 0.80; pI,. = 0.35; 
p ~ , ;  = 0.13; p ~ , ,  = 0.27, 100 x 100 lattice. Each pin1 represents the average of 10 
experiments. 0,  m = 0; x ,  m = 15;  0,  m = 125.  'The broken NNC mmsponds to 
the mean-field approximation. (0 )  Population 1. (b)  Population 2. 

propagation of a venereal disease. We have shown that the Occurrence of the epidemic 
in one population may be triggered by the Occurrence of the epidemic in the other 
population. Our main results, however, emphasize the influence of the degree of 
mixing which follows from the application of the first subrule. The degree of mixing 
is measured by a parameter m that represents the average number of tentative moves 
per individual. If m goes to CO then the time evolution of the epidemic is exactly 
described by the mean-field approximation. The approach of the mean-field value for 
the stationary density of susceptibles S(m,m) is given by a power law behaviour, 
that is S ( ~ , C O )  - S(m,oo) behaves as m-O1, where the exponent a is close to 
one if the motion of the individuals is diffusive, that is for short-range moves. For 
long-range moves the approach to the mean-field value is faster. The behaviour of 
S( m; m) for small values of m has also been studied, The derivative with respect. 
to m of S( m, CO) is negative and very large showing that as soon as the individuals 
start to move, the spread of the disease increases dramatically. If we assume that 
S ( m , t ) -  S(0,m) is a homogeneous function of m and e - 0 t ,  and that the variation 
of the density of susceptibles per unit of time is proportional to m, which seems to 
be a reasonable assumption if the approach to the attractor may be analysed in terms 
of annihilating defects, then the linear behaviour of S( m, CO) for small values of m 
follows from the fact that S ( 0 , t )  tends to S(0,m) as e-n1.  
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Appendix. Infinite-range interaction models 

In an infinite-range interaction model, the neighbourhood Ui of a given vertex i 
consists of all the other vertices. That is, U ,  = V - {i). Hence, if IV1 denotes the 
total number of vertices, lUil = IVI - 1. Since the number of neighbours is very large, 
the probability of becoming infective by contact must be very small. More precisely, 
when IVI tends to infinity, this probability should behave as l / lVl .  Therefore, in the 
case of a one-population model, equations (1)-(3) become 

N Boccara and K Cheong 

where C is the total density. In the limit IVI - m, equation (A3) is replaced by 

1( t+  1)  = f ( t )  + S ( t ) ( l  - e x p ( - p i f ( t ) ) ) - p ~ ~ ( t ) .  (A4) 

Note that, in this model, the parameter pi does not represent a probability. That is 
it may take =lues greater than one. 

Figure 19. mica1 time evolulion of an epidemic 
for the two-population infinite-range model 
when the a'e~mcnce of the epidemic in pop- 
ulation 2 is triggered bj the Occumnce of the 
epidemic in ppulalion 1. Cl = Cz = 0.3; 

0.06; p z j  = 0.20; pi,, = 0.14. 
I,(O) = I2(0) = 0.01; p,,i  = 0.90; p , , ,  = 

The equations for the corresponding two-population model read 

S,(t + 1)  = CO - f , ( t  + 1) - R,(t + 1 )  ('4-5) 

R,(t + 1)  = R,(i) + P , , J , ( ~ )  (A6) 

I , ( t +  1) = f , ( t )  + S,(t) (1 - e x p ( - P , , , ~ ~ ( O ) )  - P , , , . L ( ~ )  (AV 

where CO is the density of population a. a and p are equal to one or two with 

Depending upon the values of the different parameters, the densities of infectives 
as a function of time for these two models exhibit similar behaviour as those obtained 

a # 0. 
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using the mean-field approximation. For instance, figure 19 shows, for the two- 
population model, a typical time evolution of an epidemic when the Occurrence of the 
epidemic in population 2 is triggered by the occurrence of the epidemic in population 
1. 
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